Extracting the Classification Rules from General Fuzzy Min-Max Neural Network
نویسندگان
چکیده
منابع مشابه
Extracting the Classification Rules from General Fuzzy Min-Max Neural Network
The general fuzzy min-max neural network (GFMMN) is capable to perform the classification as well as clustering of the data. In addition to this it has the ability of learning in a very few passes with a very short training time. But like other artificial neural networks, GFMMN is also like a black box and expressed in terms of min-max values and associated class label. So the justification of ...
متن کاملGeneral fuzzy min-max neural network for clustering and classification
This paper describes a general fuzzy min-max (GFMM) neural network which is a generalization and extension of the fuzzy min-max clustering and classification algorithms developed by Simpson. The GFMM method combines the supervised and unsupervised learning within a single training algorithm. The fusion of clustering and classification resulted in an algorithm that can be used as pure clustering...
متن کاملA General Reflex Fuzzy Min-Max Neural Network
— " A General Reflex Fuzzy Min-Max Neural Network " (GRFMN) is presented. GRFMN is capable to extract the underlying structure of the data by means of supervised, unsupervised and partially supervised learning. Learning under partial supervision is of high importance for the practical implementation of pattern recognition systems, as it may not be always feasible to get a fully labeled dataset ...
متن کاملAgglomerative Learning Algorithms for General Fuzzy Min-Max Neural Network
In this paper two agglomerative learning algorithms based on new similarity measures defined for hyperbox fuzzy sets are proposed. They are presented in a context of clustering and classification problems tackled using a general fuzzy min-max (GFMM) neural network. The proposed agglomerative schemes have shown robust behaviour in presence of noise and outliers and insensitivity to the order of ...
متن کاملColor Object Recognition Using General Fuzzy Min Max Neural Network
A hybrid approach based on Fuzzy Logic and neural networks with the combination of the classic Hu & Zernike moments joined with Geodesic descriptors is used to keep the maximum amount of information that are given by the color of the image. These moments are calculated for each color level and geodesic descriptors are applied directly to binary images to get information about the general shape ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2015
ISSN: 0975-8887
DOI: 10.5120/21837-4095